Emergent Calabi-Yau geometry.
نویسندگان
چکیده
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
منابع مشابه
Lectures on complex geometry, Calabi–Yau manifolds and toric geometry
These are introductory lecture notes on complex geometry, Calabi–Yau manifolds and toric geometry. We first define basic concepts of complex and Kähler geometry. We then proceed with an analysis of various definitions of Calabi–Yau manifolds. The last section provides a short introduction to toric geometry, aimed at constructing Calabi–Yau manifolds in two different ways; as hypersurfaces in to...
متن کامل2 00 7 Enumerative geometry of Calabi - Yau 4 - folds
Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation. Several local Calabi-Ya...
متن کاملar X iv : m at h / 01 11 11 1 v 2 [ m at h . D G ] 2 5 Ju n 20 02 Lectures on special Lagrangian geometry
Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...
متن کاملov 2 00 1 Lectures on special Lagrangian geometry
Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...
متن کاملMirror Symmetry of Fourier-Mukai transformation for Elliptic Calabi-Yau manifolds
Mirror symmetry conjecture identi es the complex geometry of a CalabiYau manifold with the symplectic geometry of its mirror Calabi-Yau manifold. Using the SYZ mirror transform, we argue that (i) the mirror of an elliptic Calabi-Yau manifold admits a twin Lagrangian bration structure and (ii) the mirror of the Fourier-Mukai transform for dual elliptic brations is a symplectic Fourier-Mukai tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 16 شماره
صفحات -
تاریخ انتشار 2009